

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2023 Question Paper Log Number 73489 Publications Code WST02_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if **the candidate's resp**onse is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

`M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - the symbol $\sqrt[4]{\text{will}}$ be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the answer is printed on the question paper
 means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme					
1 (a)	When the	When the data is ordinal e.g. Judges' ranks				
	When a 1	non-linear relationship might be expected	B1			
			(2)			
(b)	$\mathrm{H}_{0}:\rho=0$	$0, H_1: \rho \neq 0$	B1			
	Critical v	value $r_s = -0.6485$ or CR: $r_s \leq -0.6485$ (and $r_s \geq 0.6485$)	B1			
	Reject H	o or significant or lies in the critical region	M1			
	The Spea correlation	arman's rank correlation coefficient shows there is sufficient evidence of a on [between the length and maximum diameter of the melons]	A1			
			(4)			
(c)	$\mathrm{H}_{\scriptscriptstyle 0}:\rho =$	$0, H_1: \rho < 0$	B1			
	Critical v	value $r = -0.5494$ or CR: $r \leq -0.5494$	B1			
	The prod negative	The product moment correlation coefficient shows there is insufficient evidence of a negative correlation [between the length and maximum diameter of the melons]				
			$\langle \mathbf{a} \rangle$			
			(3)			
		Notes	(3) Total 9			
(a)	B1	Notes For one correct condition	(3) Total 9			
(a)	B1 B1	Notes For one correct condition For a second correct condition. Condone not underlying normal	(3) Total 9			
(a) (b)	B1 B1 B1	Notes For one correct condition For a second correct condition. Condone not underlying normal For both hypotheses correct. Must be in terms of ρ. Must be attached to H ₀ and	(3) Total 9 d H ₁			
(a) (b)	B1 B1 B1 B1	Notes For one correct condition For a second correct condition. Condone not underlying normal For both hypotheses correct. Must be in terms of ρ. Must be attached to H ₀ and For critical value of -0.6485 (Allow -0.5636 if a one tailed test is stated for H ₁ Condone 0.6485 if compared with 0.673	(3) Total 9 d H ₁			
(a) (b)	B1 B1 B1 B1 M1	NotesFor one correct conditionFor a second correct condition. Condone not underlying normalFor both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ andFor critical value of -0.6485 (Allow -0.5636 if a one tailed test is stated for H ₁ Condone 0.6485 if compared with 0.673A correct statement – no context needed but do not allow contradicting non concomments. It their CV provided the CV is negative (May be implied by a correct conclusion) Condone a positive CV if a comparison with 0.673 seen	(3) Total 9 d H ₁) ntextual ect			
(a) (b)	B1 B1 B1 B1 M1 A1	NotesFor one correct conditionFor a second correct condition. Condone not underlying normalFor both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ andFor critical value of -0.6485 (Allow -0.5636 if a one tailed test is stated for H ₁ Condone 0.6485 if compared with 0.673A correct statement – no context needed but do not allow contradicting non concomments. ft their CV provided the CV is negative (May be implied by a correct conclusion) Condone a positive CV if a comparison with 0.673 seenFor a correct conclusion which is rejecting H ₀ Allow negative correlation This independent of the hypotheses	(3) Total 9 d H ₁) ntextual rect mark is			
(a) (b)	B1 B1 B1 B1 M1 A1 B1	NotesFor one correct conditionFor a second correct condition. Condone not underlying normalFor both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ andFor critical value of -0.6485 (Allow -0.5636 if a one tailed test is stated for H ₁ Condone 0.6485 if compared with 0.673A correct statement – no context needed but do not allow contradicting non concomments. If their CV provided the CV is negative (May be implied by a correct conclusion) Condone a positive CV if a comparison with 0.673 seenFor a correct conclusion which is rejecting H ₀ Allow negative correlation This independent of the hypothesesFor both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ and	(3) Total 9 d H ₁) ntextual act mark is d H ₁			
(a) (b)	B1 B1 B1 B1 M1 A1 B1 B1	NotesFor one correct conditionFor one correct condition. Condone not underlying normalFor a second correct condition. Condone not underlying normalFor both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ andFor critical value of -0.6485 (Allow -0.5636 if a one tailed test is stated for H ₁ Condone 0.6485 if compared with 0.673 A correct statement – no context needed but do not allow contradicting non concomments. If their CV provided the CV is negative (May be implied by a correct conclusion) Condone a positive CV if a comparison with 0.673 seenFor a correct conclusion which is rejecting H ₀ Allow negative correlation This independent of the hypothesesFor both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ andFor critical value of -0.5494 (Allow -0.6319 if a two tailed test is stated for H ₁ Condone 0.5494 if compared with 0.525	(3) Total 9 d H ₁) ntextual ect mark is d H ₁			

Question Number		Scheme				Marks
2 (a)	$\frac{60 \times 60}{240}$	or $\frac{60 \times 84}{240}$	or $\frac{60 \times 84}{240}$ or $\frac{60 \times 96}{240}$			
	15 and 2	1 and 24	240 240 and 24			
						(3)
(b)	H_0 : The H_1 : The	re is no association between the payment amount and payment method used				B1
	ObservedExpected $\frac{(O-E)^2}{E}$					
	2	3	15	$\frac{(23-'15')}{'15'} = 4.2667$		M1
	2	1	21	$\frac{(21-'21')}{'21'} = 0$		111
	1	6	24	$\frac{(16-'24')}{'24'} = 2.6667$		
	$\chi^2 = 2.4$	048 + '4.2667	'+'0'+'2.666	7'		M1
	= 9.3	381			awrt 9.34	A1
	v = (3 -	1)(3-1) = 4	$\chi_4^2(0.05)$ =	$= 9.488 \implies \text{CR:} X^2 \ge 9.48$	8	B1 B1ft
	[Not in the between	ne CR/Not significant/Do not reject H_0] There is no evidence of an association the payment amount and payment method used				
						(7)
			Notes			Total 10
(a)	M1	For a correct	For a correct method for finding one expected value			
	A2	For all 3 and (A1 for 2 co	For all 3 answers correct (A1 for 2 correct answers or 1 correct and 3 values that sum to 60)			
(b)	B 1	Both hypotheses correct. Must mention method and amount with payment at least once. (may be written in terms of independence)				
	M1	For a correct method for finding all three contributions to the χ^2 value ft their part a May be implied by 3 correct values If expected values are incorrect then working must be shown				
	M1	M1 For adding their values to 2.4048 (If all 9 values are calculated the 6 values not found in part (a) must have working shown or the correct values seen or awrt 9.34)				t found in
	A1	awrt 9.34				
	B1	v = 4 This mark can be implied by a correct critical value of 9.488				
	B1ft	9.488 or bet	tter ft their Do	oF		
		Dependent H ₀	on both M ma	arks. A correct contextualis	ed conclusion which is not	trejecting
	dA1	Must mention then A0 her	on method ar	ad amount . If no hypothese ory statements score A0. e	es or they are the wrong wa .g. "Significant, do not rej	ay round, ect H_0
		".Condone	"relationship"	or "connection" here but I	not "correlation".	

Question Number		Scheme	Marks
3 (a)	It is not a	a statistic as it involves <u>unknown</u> [population] parameter	B1
			(1)
(b)	$\mathrm{E}(S) = \mathrm{E}(S)$	$E\left(\frac{3}{5}X_{1} + \frac{5}{7}X_{2}\right) = \frac{3}{5}E(X_{1}) + \frac{5}{7}E(X_{2})$	M1
	$=\frac{3}{5}\mu + \frac{3}{5}\mu$	$\frac{5}{7}\mu = \frac{46}{35}\mu \neq \mu$ So S is a biased estimator for μ	A1
			(2)
(c)	$\frac{46}{35}\mu' - \mu'$	$\mu = \frac{11}{35}\mu$	B1ft
			(1)
(d)	$\mathrm{E}(Y) = a$	$d\mathbf{E}(X_1) + b\mathbf{E}(X_2) = \mu$	M1
(u)	$\Rightarrow (a+b)$	$(\mu)(\mu) = \mu$	1411
	a+b=1		A1
			(2)
(e)	$\operatorname{Var}(Y)$	$= a^{2} \operatorname{Var}(X_{1}) + b^{2} \operatorname{Var}(X_{2}) = (a^{2} + b^{2}) \sigma^{2}$	M1
	$\operatorname{Var}(Y)$	$=(a^2+(1-a)^2)\sigma^2$	M1
	$\operatorname{Var}(Y)$	$= (2a^2 - 2a + 1)\sigma^2 *$	A1*
			(3)
		Notes	Total 9
(a)	B1	For a correct explanation Allow σ is unknown (Do not allow σ is unknown var	riance)
(b)	M1	For writing or using $E(S) = aE(X_1) + bE(X_2)$ Condone missing subscripts	
	A1	cao (Allow $1.31 \mu \neq \mu$)	
(c)	B1ft	Follow through their part (a) – μ	
(d)	d) For writing or using $E(Y) = aE(X_1) + bE(X_2) = \mu$ (May be implicitly defined as $E(Y) = bE(X_1) + bE(X_2) = \mu$ (May be implicitly defined as $E(X_1) + bE(X_2) = \mu$ (May be implicitly defined as $E(X_1) + bE(X_2) = \mu$ (May be implicitly defined as $E(X_1) + bE(X_2) = \mu$ (May be implicitly defined as $E(X_1) + bE(X_2) = \mu$ (May be implicitly defined as $E(X_1) + bE(X_2) = \mu$) (May be implicit		1)
(u)		Condone missing subscripts	
	A1	Cao	
(e)	M1	For writing or using $\operatorname{Var}(Y) = a^2 \operatorname{Var}(X_1) + b^2 \operatorname{Var}(X_2)$ Condone missing subsc	cripts
	M1	For substitution of $b = 1 - a$ ft their part (d) into their expression for Var(Y)	
	A1*	Answer is given so no incorrect working must be seen	

Question Number		Scheme	Mark			
4 (a)	$\left[\int_{a}^{a+1} \frac{2}{25}t dt\right] = \frac{2}{25} \left[\frac{t^2}{2}\right]_{a}^{a+1} \text{ or } F(t) = \begin{cases} 0 & t < 0\\ \frac{1}{25}t^2 & 0 \le t < 5 \text{ or}\\ 1 & t > 5 \end{cases}$ $\frac{1}{2} \left(\frac{2}{25}(a+1) + \frac{2}{25}a\right)(a+1-a)$					
	$\frac{1}{25}\Big((a$	$(a+1)^2 - a^2$) or $\frac{1}{25}(a+1)^2 - \frac{1}{25}a^2$ or $(\frac{1}{25}a + \frac{1}{25} + \frac{1}{25}a)$	M1			
	$\frac{1}{25}(a$	$a^{2} + 2a + 1 - a^{2}$) oe $\left[= \frac{1}{25} (2a + 1) \right]^{*}$	A1*			
	н.,	The data could be modelled by the n d f	(3)			
(b)	H ₁ : 7	The data could not be modelled by the p.d.f	B1			
	Expec	eted frequencies: 6, 18, 30, 42, 54	M1 A1			
	$\left \sum \frac{(O)}{O} \right $ or $\sum \frac{(O)}{O}$	$\frac{(D-E)^2}{E} = \frac{(10-6')^2}{6'} + \dots + \frac{(68-54')^2}{54'}$ $\frac{(C-E)^2}{E} - N = \frac{10^2}{6'} + \dots + \frac{68^2}{54'} - 150 \text{ or } 2.666\dots + 1.388\dots + 1.2 + 1.166\dots + 3.629$	M1			
	= 10.0	05 awrt 10.1	A1			
	v = 4		B1			
	$\gamma_{1}^{2}(0$	$(0.05) = 9.488 \implies CR \ge 9.488$	B1ft			
	In the	\sim CR so there is sufficient evidence to reject H ₀]				
	Suffic	tient evidence to say that data does not fit the given p.d.f	dA1			
			(8)			
		Notes	Total 11			
(a)	M1	M1 For correct integration, ignore limits or finding the area of a trapezium				
	M1	For substitution of the limits. May be implied by $\frac{1}{25}(a^2+2a+1-a^2)$ or simplifying the expression for the area of the trapezium				
	A1*	Answer is given so no incorrect working should be seen. At least one correct line of working from the method mark to the final answer should be seen				
(b)	B1	Both hypotheses correct. Allow H_0 : The p.d.f/f(t) is a suitable model H_1 : The p.d.f/f(t) is not a suitable model				
	M1	For a correct method to find at least one expected frequency e.g. $\frac{1}{25} \times 150$ Ignore any reference to limits				
	A1	For all 5 expected frequencies correct				
	M1	For an attempt at the test statistic, at least 2 correct expressions/values ft their expect frequencies	ed			
	A1	awrt 10.1				
	B1	v = 4 This mark can be implied by a correct critical value of 9.488				
	B1ft	9.488 or better ft their DoF				
	dA1	Dependent on 2 nd M1. A correct conclusion based on their χ^2 critical value				
	If no hypotheses or they are the wrong way round, then A0 here.					

Question Number		Scheme	Marks
5 (a)	$\overline{x} \pm 1.644$	$49 \times \frac{5}{\sqrt{10}}$	M1 B1
	$\overline{x} \pm 2.60$	$\Rightarrow (\overline{x} - 2.60, \overline{x} + 2.60) *$	A1*
			(3)
(b)	$\overline{y} \pm 1.96$	$\times \frac{3}{\sqrt{20}}$	M1 B1
	$\overline{y} \pm 1.31$	$\Rightarrow (\overline{y} - 1.31, \overline{y} + 1.31)$	A1
			(3)
(c)(i)	$\overline{X} - \overline{Y} \sim$	$N\left(\mu-\mu, \ \frac{5^2}{10}+\frac{3^2}{20}\right) \Longrightarrow \overline{X}-\overline{Y} \sim N(0, \ 2.95)$	M1 A1
(ii)	Do not o	verlap when either	
	$\bar{x} - 2.60$	$> \overline{y} + 1.31'$ or $\overline{x} + 2.60 < \overline{y} - 1.31'$	M1
	$\overline{x} - \overline{y} > 1$	3.91 or $\bar{x} - \bar{y} < -3.91$	Alft
	$2 \times P(\overline{X} +$	$-\overline{Y} > 3.91) = 2 \times P\left(Z > \frac{'3.91'-'0'}{'\sqrt{2.95'}}\right) = \left[2 \times P(Z > 2.276)\right]$	M1 M1
	[2×0.01	$13 = 0.0226$ (calculator gives $[2 \times 0.0114] = 0.0228$)	A1
			(7)
		Notes	Total 3
(a)	M1	For use of $\overline{x} \pm z$ value $\times \frac{5}{\sqrt{10}}$	
	B1	For use of $z = 1.6449$ or better	
	A1*	Answer is given so no incorrect working should be seen (condone use of 1.645))
(b)	M1	For use of $\overline{y} \pm z$ value $\times \frac{3}{\sqrt{20}}$	
	B1	For use of $z = 1.96$ or better	
	A1	For $(\overline{y} - awrt1.31, \overline{y} + awrt1.31)$ Allow 1.315	
(c)(i)	M1	For a correct method to find the variance (May be seen in a standardisation exp	ression)
	A1	For N(0, 2.95) (May be seen in a standardisation expression) Allow N $\left(0, \frac{5^2}{10}\right)$	$+\frac{3^2}{20}$) oe
(ii)	M1	For $\bar{x} - 2.60 > \bar{y} + 1.31$ oe or $\bar{x} + 2.60 > \bar{y} - 1.31$ oe ft part (b)	
	A1ft	For $\overline{x} - \overline{y} > 3.91'$ or $\overline{x} - \overline{y} < -3.91'$ ft part (b)	
	M1	For multiplying by 2 (may be seen at any stage of their working)	
	M1	For standardising ft their 3.91, their mean and their standard deviation (Do not a of 2.6 or 1.31 as their 3.91)	allow use
	A 4		

Question Number		Scheme	Marks			
6 (a)	$\alpha = 5.1$					
	$\beta = \sqrt{\frac{16}{3}}$	$\frac{94.65 - 65 \times ('5.1')^2}{64}$	M1			
	= 0.25		A1			
			(3)			
(1)	$H_0: \mu_A =$	μ_{B}	D1			
(b)	$H_1: \mu_A <$	$\mu_{\scriptscriptstyle B}$	BI			
	7 = +	5.0-'5.1'				
	$\sum_{i=1}^{n}$	$\overline{0.24^2 + 0.25'^2}$	M1 M1			
	$\sqrt{-1}$	70 + 65				
	= -2.3	67 awrt –2.37	A1			
	One taile	ed c.v. $z = -1.6449$ or CR: $z \le -1.6449$	B1			
	In CR/Si	gnificant/Reject H ₀	M1			
	Sufficien	t evidence to support Roxane's claim	A1			
			(7)			
(c)	Since the	e sample is large the CLT applies.	M1			
	No [need	to assume that the fat content is normally distributed]	A1			
			(2)			
(d)	Assumed	that $s^2 = \sigma^2$ in both groups	B1			
			(1)			
		Notes	Total 13			
(a)	B1	cao				
	M1	For a correct method to find β using their α				
	A1	Cao				
(b)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	l			
	M1	For correct standard error ft their <i>s</i> in part a				
	M1	For an attempt to find the test statistic, ft their SE and their α				
	A1	awrt –2.37 (Allow 2.37)				
	B1	B1 –1.6449 or better (seen) (Allow 1.6449 or better if comparing to their 2.37)				
	M1	A correct statement – need not be contextual but do not allow contradicting ne	on			
		A correct contextual statement e.g sufficient evidence to support that crisps fr	om brand			
	A1 A have a lower fat content than the crisps from brand B (must include the words					
(c)	M1	bold) A suitable comment that mentions large and CLT				
	Δ1	A correct answer context not required				
(d)	B1	For the assumption that sample variance = population variance for both group	25			

Question Number		Scheme	Marks			
7 (a)	$E(X) = 4 \times 15 - 3 \times 10[=30]$					
	Var(X)	$Var(X) = 4^2 \times 5^2 + 3^2 \times 4^2 [= 544]$				
	So <i>X</i> ~ 1	N(30, 544)				
	$P(X < 40) = P\left(Z < \frac{40 - '30'}{\sqrt{544}}\right) \left[= P(Z < 0.428)\right]$					
		= 0.6664 (Calculator gives 0.6659) awrt 0.666	A1			
			(4)			
(b)	E(A+B)	+D) = 15 + 10 + 3 × 20 = [85]	M1			
	Var(A +	$B+D) = 5^{2} + 4^{2} + 3 \times \sigma^{2} = [41+3\sigma^{2}]$	M1			
	So $A + B$	$B + D \sim N(85, 41 + 3\sigma^2)$				
	P(A+B)	$+D < 76 = P \left(Z < \frac{76 - 85}{\sqrt{41 + 3\sigma^2}} \right) = 0.242$				
	So $\frac{-}{\sqrt{41+}}$	$\frac{9}{\sqrt{41+3\sigma^2}} = -0.7$ or $\frac{9}{\sqrt{41+3\sigma^2}} = 0.7$ (Calculator gives -0.69988)	M1 A1			
	$3\sigma^2 = \left(-\frac{1}{2}\right)$	$\left(\frac{-9}{-0.7}\right)^2 - 41$	dM1			
	σ = 6.43	7 awrt 6.44	A1			
			(6)			
		Notes	Total 10			
(a)	M1	For a correct method to find $E(X)$. May be implied by a correct standardisative expression.	on			
	M1	For a correct method to find Var(X) Allow $\sqrt{544}$ oe or 23.3 ² or better. May	be implied			
	1911	by a correct standardisation expression.				
	M1	For standardising (\pm) using their mean and their variance				
	A1	awrt 0.666				
(b)	M1	For a correct method to find $E(A + B + D)$				
	M1	For a correct method to find $Var(A + B + D)$				
	M1	For standardising (\pm) using their mean and their standard deviation which is i	in terms of			
	1911	σ^2 and setting equal to -0.7 or better. Allow +0.7				
	A1	For the correct equation				
	dM1	Dependent on the previous M mark. For squaring and rearranging leading to a in σ^2	n equation			
	A1	awrt 6.44 (Do not award if previous A mark was not awarded)				